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Abstract. The performance of neural network models with arbitrary non-linearity and  
Gaussian external noise superimposed on  the synaptic efficacies i s  analysed. The memory 
function, though surprisingly robust, gradually fades out as  the noise level is increased. 
In  the low-noise limit the best performance is at zero temperature.  There is a noise range, 
however, where optimal performance is obtained at a non-zero temperature.  

Robustness with respect to both input data errors and  internal failures is one of the 
most prominent-and most valuable-characteristics of an  associative memory [ 1-81. 
The neurons being modelled [9] by Ising spins S (  i ) ,  1 N, the basic idea [l] behind 
this robustness is that recalling a memory is equivalent to a downhili motion in a 
free-energy landscape of a Hamiltonian 

i 

with suitable symmetric couplings $,J =$Jl. The patterns to be stored in the $,, are 
specific spin configurations, associated with the 'bottom' of certain free-energy valleys. 
The domain of attraction of a pattern is the whole free-energy valley. 

Locality [ 10, 111 is an  important physiological requirement which implies that g,, 
is determined by the local information available to neurons i and j only. Then [8, 121 

2,, = N - ' Q ( f , ;  5,) (2) 

for some synaptic kernel Q(x; y )  = Q ( y ;  x).  Here f ,  and f )  are vectors with components 
[,a and t,,, respectively, where 1 s (Y s q labels the stored patterns. The &,a are 
independent, identically distributed random variables which take the values i 1 with 
equal probability; for the ensuing argument, however, this is not necessary [8, 12,131. 
A model is called non-linear if the introduction of new data requires a non-linear 
operation on Q. The original Hopfield model [ 11 is linear whereas, for instance, clipped 
synapses constitute a non-linear model (see below). 

Neither a considerable alteration of the input data (the patterns) nor a dilution of 
the bonds (the synaptic efficacies) noticeably deteriorates the memory function 
[ 1,4 ,5 ,8] .  There is, however, yet another source of errors: external noise, which 
modijies the $,,. In this paper we study the case where 

8 , = N - ' Q ( f t ;  f,)+-Eb,, (3) 

0305-44701871 186553 + 08S02.50 0 1987 IOP Publishing Ltd 6553 



6554 J L van Hemmen and K Rzaiewski 

for general non-linearity, i.e. arbitrary synaptic kernel Q. The b,,,  which represent the 
noise, are taken to be independent identically distributed Gaussians, with mean zero 
and variance N - ’ ,  as in the Sherrington-Kirkpatrick ( S K )  model [ 141. The non-linearity 
in Q will be treated exactly while the noise will be handled in the replica-symmetric 
approximation, which for moderate values of F will prove to be quite accurate. 

We first turn to the results, which are formulated most conveniently in terms of a 
specific model. They are, however, valid in a much wider context. We take Q to 
represent an  inner-product model [ 121 

a x ;  Y )  = G ” . Y / d ’ q )  (4) 

and concentrate on a non-linear but technologically highly interesting model, clipped 
synapses, with 4 ( x )  = sgn(x). Note that the linear Hopfield model has 4 ( x )  = x. 

The case of finitely many patterns already turns out to be quite interesting. 
Throughout most of this work we therefore take q to be finite, even when N + W .  I f  
equation (4) holds, then all stored patterns bifurcate from zero [8, 121 (i.e. the paramag- 
netic phase) at the same temperature T, = -2 , .  For clipped synapses [8], A I  = ( 2 / 7 ~ ) “ ’ =  
0.80 is proportional to the largest eigenvalue of Q. Figure 1 shows the phase diagram. 
There is a paramagnetic phase ( P )  where no  information can be retrieved since thermal 
motion destroys every free-energy valley. There is also a spin-glass phase ( S G )  where 
again no information can be retrieved since the noise dominates, and there is a retrieval 
phase ( R ) ,  where the quality of recovery can be measured by an  order parameter 
m ( ~ ,  T ) ,  which is a function of the noise level F and the temperature T. The closer 
m is to one, the better the retrieval. For E > E ,  = ( 2 / i ~ ) ” ~ . \ , ,  no pattern can be retrieved 
at zero temperature. The critical line R-SG for E ,  < F < 

Figure 2 shows a plot of m(E, T = O ) .  The memory function is very robust. At 
T = 0 the error fraction, which is given by $( 1 - m ) ,  is less than 0.5’/0 if E s 0.391\l , so 
excellent performance is guaranteed for e 6 ; E , .  

is second order. 

0 0 . 6 4  0.80 
E 

Figure 1. Phase diagram for tinitel) many patterns stored in clipped synapses with external 
noise. For high enough temperature only a paramagnetic phase ( P I  exists and no informa- 
tion can be retrieved. For T < 1, = 0.80 and  F < P ,  = 0.80.1, = 0.64 there is a stable retrieval 
phase ( R I  d o h n  to T = 0 .  I f  the noise level P is too high / F  > F ‘ ) ,  only a spin-glass phase 
( S G \  exists. To the left of  F.  the retrieval phase is stable. The  critical line K-sc is second 
order.  
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Figure 2. Zero-temperature retrieval quality m as a function of E .  The error fraction is 
given by f ( l  - m). There is a continuous transition to the spin-glass phase at F = E , .  For 
clipped synapses, E ,  = 2,'x = 0.64. 

Fixing E =0.55 we show m in figure 3 as a function of T. We took E rather near 
to E ,  = 0.64 (clipped synapses). At T, = .I,, m (  E ,  T )  has a square root singularity. But, 
the maximum of m(E, T )  is not at T =  0 but at a Jinite non-zero T, which is rather 
surprising. In figure 4 we show M ( E ,  T )  as a function of both F and T. The effect 
displayed in figure 3 is clearly brought out. 

Before turning to the arguments leading to these results we note that the case of 
extensively many patterns [ 151 is now relatively well understood and  does not produce 
essentially new results. In the case of the inner-product models (4) there is a universal 
function F ( x )  which determines the retrieval quality at T=O [15]. It contains a 
constant C which only depends on the synaptic function 4. The very same constant 

Figure 3. Retrieval quality m (full  curve) and  spin-glass order parameter q (dot ted curve) 
as a function of the temperature 7 for  F = 0.55 < F ,  = 0.64. The temperature varies between 
zero and T, = .Il, where for clipped synapses .Il = (2 /  x ) '  = 0.80. Note that the maximum 
of m occurs at non-zero temperature.  
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Figure 4. Retrieval quality m as a function of the noise level E and the temperature T for 
clipped synapses. In  the noise range near E ,  = 0.64 the maximum of m occurs at a non-zero 
temperature; see figure 3 .  

C occurs in the equations which govern the finite-temperature behaviour. Adding 
external noise simply means that we replace C by (C  + E ' ) .  

For ease of reading we have divided the argument below into several steps. 
( a )  The replica method. Let ZN = Tr exp(-PHN) be the partition function, a sum 

over all Ising spin configurations. Furthermore, let d N ( n )  = N-'  ln(Zk) for positive 
integer n. The replica method [16] consists of sending N to infinity first, extending 
the limit 4(  n )  to a neighbourhood of n = 0 and  obtaining the free energy -p f (p)  by 
calculating the derivative 4'(0). The angular brackets in ( Z k )  denote an average over 
the Gaussian noise. Performing this average, we obtain 

( Z k ) =  C,(n) Trexp(-PH',"') ( 5 )  

where C,(n) is a constant which we drop for the moment, and 

Here U and  U' label the n replicas and (a, a') ranges through all pairs. 
( b )  The synaptic kernel. We now have to handle the non-linearity in Q [8, 12, 131. 

Let 0 denote the (discrete) set of outcomes x of the random vector 6 and let p ( x )  be 
their probability. For instance, if the &? are * 1 with equal probability, then 0 = { - 1, l}" 
and p ( x )  = 2-" for all x. We partition the index set 11,. . . , N }  into disjoint subsets 

( 7  1 Z(x) = { i : 6, = x} 
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+ ; ( P E ) *  (U,") c (")2]. x (9) 

Equation (9) may be summarised in words by stating that -pH',"' is a function F (  6, {) 
of the intensive variables 6 = ( m , ( x ) ;  x E C, 1 CT < 
U ' S  n) times the extensive variable N. 

(c)  Thermodynamic limit. As N+m, because q is fixed, the size I l ( x ) l  of the set 
I ( x )  is p ( x ) N  and thus grows linearly with N. Furthermore, to each x there belongs 
a group of order parameters m , ( x )  and q, , , (x ) ,  and for different x these are not directly 
correlated. More precisely, as stochastic variables they are independent. We may 
therefore apply a large-deviations argument [8, 12, 13, 171 to each of the I ( x )  separately 
and then 'glue' the parts together. That is, instead of the Ising spin variables S,( i )  we 
can introduce new variables 6 and cj whose common distribution is given by the density 

9(6, s' )  = n %(w), ~ ' ( x ) )  = exp - N  c p ( x ) c * ( f i ( x ) ,  { ( x i ) ) ]  (10) 

n )  and { = ( q , , , ( x ) ;  x E 0, 1 

[ ( x  

where c* is the Legendre transform [17] of the convex c function 

Here U' and U' are vectors in R" and R"i"- l l i '  respectively. As N + CO, an integration 
over 6 and cj replaces the ordinary trace and 4 N (  n )  = N - '  In(2;) converges to 

c$( n )  = lim N - '  In d 6  d{ 9( 6,cj) exp( N F (  6, {)}  
hi - Tc 

The supremum in (12) is realised for all those (6, {) which satisfy the fixed-point 
equation 

( 6 ( x ) ,  $ ( x i )  = V c ( P a ' ( x ) ,  ( P F ) 2 G ( X ) )  (13 )  

where, for later usage, we define 

a, , (x)  = c Q(x; y ) p b ) m , , ( y )  (14a 1 
\ 
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Taking advantage of (13) one can use a simple argument (see 5 I1I.A of [7]) to rewrite 
(12) in the form 

d(n)  = ma:( m. 4 - ~ ( f i ,  i ) + ~  p ( x ) c ( p ~ ( x ) ,  i ~ ~ i l i ( x ) ) ) .  (15) 

One has to choose that solution to the fixed-point equation (13) which maximizes (15). 
In equations (13)-( 15), Z(x) is a vector with components a,,(x),  1 S U n and i ( x )  = 
( q v v . ( x ) ;  1 s U <  U ’ S  n).  

( d )  Replica symmetry. Assuming replica symmetry we can drop all the indices U 

and U ‘  from f i  and 9‘ in equations (9)-(15). This assumption is consistent with the 
fixed-point equation (13). Performing the ‘evident’ real variable extension of 4(  n )  to 
a neighbourhood of n = 0 and  including the C,(n) of equation (5) we then find 

-pf(p) =Iim n - ’ d ( n )  = : ( ~ E ) ~ ( I  - q ) 2 - $ J Q ( m )  
n - 0  

+c p(x)(ln{2 cosh[P(a(x)  + E”) 
X 

where m and q = Exp(x)q(x) satisfy the fixed-point equation 

m(x)  = ( tanh[P(a(x)+  E & z ) ] )  

q ( x )  = (tanh’[p(a(xj+ E&z)]) 

(16) 

for all x E 0. In (16) and  (17) and throughout the following, angular brackets denote 
a Gaussian average over a single z with mean zero and variance one. Q ( m )  is the 
double sum involving Q in (9). By their very definition (8), the m(x)  govern the 
retrieval quality. The q ( x )  are spin-glass order parameters-exactly as in the SK model, 
to which (16) and (17) reduce if m = 0. 

( e )  Energy and entropy. The energy u ( p )  is easily obtained through the relation 
U(@) = ( a / a p ) ( P f ( P ) )  

u ( p ) =  - ; Q ( m ) - $ F 2 ( 1  - q 2 ) .  (18) 

The entropy s ( p )  then follows from f= U - Ts or through s ( p )  = P’(d/ap)f(p). Both 
methods give 

s ( P )  = -[;pE(l -e)12+so(P) (19) 

(20) 

( f )  Zero-temperature limit. One can show that s o ( p ) z O  and so(p)+O as p+co. 
The first term in (19) is negative and converges to a finite non-zero limit as p + co. We 
now determine this limit. 

We first note that q ( x )  and hence q converge to one as p + w .  Let g(p;x)=  
p (  1 - q ( x ) ) .  This expression also converges to a finite limit 

(21) 

where 

~ o ( P )  = - P Q ( m )  - ( P ~ ) ’ q ( l  -e) +I p(xI(lnI2 cosh[P(u(x)+  ~J;z)l}). 
x 

0-x  lim E % ( P ;  x) = ( ~ / r ) ’  ’ e x p [ - + ( u ( x ) / ~ ) ~ ]  < 1. 

P - x  Iim s ( p j =  P - *  lim - t [ / 3 ~ ( 1 - q ) ] ’ = - ~ 5 ~ ’  

The zero-temperature entropy s(zcc) is then given by 

(22) 
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where, by virtue of (21) and the fact that q = Zxp(x)q(x), 

% = ~ p ( x ) ( 2 / r r ) ” ’ e x p [ - t ( a ( x ) / ~ ) ~ ] .  (23) 
X 

8 is strictly smaller than (2/7r)’ unless a ( x )  vanishes for all x. In the pure spin-glass 
phase m = 0 and the network has lost its memory completely. Then 8 = (2/7r)”‘ and 
s(c0) = -1/27r, which is the value for the replica-symmetric solution to the S K  model 
[14]. We will see shortly that for not too large a noise level (i.e. E ) ,  s ( m )  is orders of 
magnitude closer to zero than the S K  value. 

Turning to m ( x )  in (17) we observe that, as p + m ,  tanh{P(. . .)} converges to 
sgn{ p (. . .)} and thus 

lim m ( x )  = e r f ( a ( x ) / h e )  (24) 
B - =  

for all x E 0. 
( g )  Bifurcation analysis and examples. For high enough temperature, or small 

enough p, the only solution to the fixed-point equation (17) is m = 0 and q = 0. As we 
lower the temperature, a bifurcation occurs as we cross the line T = E or T = A I  where 
A, is the largest eigenvalue of the matrix with elements Q ( x ; y ) p ( y ) .  See 
figure 1. 

We now have to relate A I  to the physics of the problem. Let us suppose, to simplify 
the discussion, that Q is of the inner-product form (4) and that p ( x )  = 2 - “  for all 
x E 0 = {-1, l}“. Then one can show [S, 12,151 the following. ( i )  The components 
u , ( x )  of the 2“ eigenvectors U, of Q may be assumed to have absolute value one. (ii) 
By the central limit theorem, A,  becomes independent of 9 as q+w.  For instance, 
for clipped synapses with 4 ( x )  = sgn(x) we have A, = (2/7r)”’=0.80. (iii) Finally, as 
in the case of clipped synapses, the stored patterns are related to A I  and thus should 
bifurcate j r s t .  

Picking a specific pattern, say a, we make the ansatz m ( x )  = m v , ( x )  with m 3 0 in 
( 1 7 ) .  Then a ( x )  = m . l , u , ( x )  and (17) reduces to only two coupled equations 

- 
m =( tanh[p(mA,  + ~ J q z ) ] )  

q = (tanh’[p(mAI + E&z) ] ) .  

These equations can be solved numerically. For -1, = (2/7r)”” the result is shown in 
figures 2-4. The closer m is to one, the better the retrieval. 

By virtue of (24) we get at zero temperature 
- 

m = e r f ( m , 1 , / ~ 2 ~ ) .  (26) 

Because the error function behaves like the hyperbolic tangent, equation (26) has a 
non-trivial solution m f 0 only if 

(27) 

For E < E ~ ,  the energy of the retrieval state is always lower than that of the spin-glass 
phase. 

In the case of clipped synapses the error fraction $( 1 - m )  is less than 0.005 if E 

does not exceed F‘ = 0.39‘1, = $ E = .  For this particular value of E the zero-temperature 
entropy s(m) is 1.3 x lo-’ times the S K  value -1/27r, making it very close to zero 
indeed. For F =s $ E ,  the effects of replica symmetry breaking can be safely ignored. 

E < E‘ = ( 2/ 77- ) I .i = 0.80.2 . 
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In summary, the performance of a non-linear neural network with Gaussian noise 
superimposed on the synaptic efficacies has been analysed in detail. The non-linearity 
may be arbitrary and through a large-deviations argument [7 ,8 ,  15, 171 the statistical 
mechanics could be obtained exactly. For suitable values of the noise strength E ,  

the optimal performance of the network is obtained at a non-zero temperature; see 
figure 4. 

The above results may be compared with the ones presented in a recent paper of 
Sompolinsky [18]. A closer examination reveals that his method is restricted to 
inner-product models. The non-linearity is treated approximately as Gaussian noise, 
which is then mapped onto a (linear) Hopfield model. As we have seen, this kind of 
approximation is not needed. Furthermore, no attention is paid to the dependence of 
the retrieval quality upon F and the temperature T which is, after all, rather surprising. 
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